LynTec RS-232 Controlled Panels and Load Centers

Motorized Breakers Make Control Easy!

All relay-based systems MUST be electrically protected by a circuit breaker. Motorized breakers eliminate the need for wall or rack mounted relay-based systems...
\square Saves Space
\square Saves redundant installation and hardware costs!
\square UL listed circuit breaker with builtin internal switching capability manufactured by

D square o

\square Time tested, in service over 20 years
\square Available in 15A, 20A and 30A-1, 2 or 3 poles for remote control of all electrical loads
\square Robust - rated for 60k on, off, on cycles
\square Energy efficient - NO holding current or heat sinks required to maintain state - Runs cool, lasts long!
\square Automatic load shedding and brownout protection in every panel.

\square Emergency override funtion standard on every panel.

Specifiying in 5 easy steps

1. Choose the control method: SC=RS-232
2. Choose the cabinet style: LC for load center and \mathbf{P} for panelboard
3. Choose three phase (3) or single phase (1)
4. Choose the number of circuits: $\mathbf{2 6}$ or $\mathbf{4 1}$ Panelboards are only available in 41 circuits.
5. Choose the maximum number of controlled circuits: 10,20, 30, 40, or $\mathbf{5 0}$.

EX: SCLC 326-20 = a 3 phase load center with 26 circuits (20 max controlled)
SCP 341-30 = a 3 phase panel board with 41 circuits (30 max controlled)

AVAILABLE MODELS

See www.LYnTec.com for model specific design and submittal PDFs LOAD CENTERS

SCLC 326-xx-Mxxx RS-232 Controlled Load Center 3Ø, 208Y/120 Vac, 4 wire. - 100 Amp Main Breaker Standard

LynTec

RS-232 Controlled Load Center model numbers
SCLC 326-10-Mxxx (Up to 10 RS-232 controlled circuits) SCLC 326-20-Mxxx (Up to 20 RS-232 controlled circuits) SCLC 326-30-Mxxx (Up to 26 RS-232 controlled circuits) Square D QO327M100 Load Center with LynTec low-voltage sidecar.
Standard back-fed Main Breaker: Squared D\# QO3100VH. 100A,
(VH = 22k AIR) [Amps Interrupt Rating]
Back-fed Main Breaker options Part\# suffix - Bold face=Amps -M3030, -M3040: (10kAIR) Square D\# QO30xx
-M3050, -M3060, -M3070 or -M3090 Squared D\# QO3xxVH (all VH $=22 \mathrm{k}$ AIR)

Wire Sizes

 \#4-2/0 CuOutside dimensions 20.9" w., 29.8" h., 3.9" d.

Main Lug Only -MLO option Remove Back fed main and top feed as a MLO to gain 3 circuits. Feed from a protected disconnect.

Provides access to branch breaker positions $1,3, \& 5$.
Model number becomes a SCLC 329-10-MLO
(10 RS-232 controlled circuits) SCLC 329-20-MLO
(20 RS-232 controlled circuits) SCLC 329-30-MLO
(Up to 29 RS-232 controlled circuits) (Holds up to 29 one pole breakers) 125 Amp. Panel Bus Rating Wire size: \#6-2/0 Cu

SCLC 341-xx-Mxxx RS-232 Controlled Load Center 3Ø, 208Y/120 Vac, 4 wire. - 225 Amp Main Breaker Standard

LynTec

RS-232 Controlled Load Center MODEL NUMBERS
SCLC 341-10-Mxxx (Up to 10 RS-232 controlled circuits)
SCLC 341-20-Mxxx (Up to 20 RS-232 controlled circuits)
SCLC 341-30-Mxxx
(Up to 30 RS-232 controlled circuits)
SCLC 341-40-Mxxx
(Up to 40 RS-232 controlled circuits)
Square D QO342MQ225 Load Center with LynTec low-voltage sidecar. Standard Main Breaker: Square D\# QDL32225. 225 Amp Main Breaker options Part\# suffix - Bold face=Amps -M3150 or -M3200

Square D\# QDL32xxx series (all 25k AIR) [Amps Interrupt Rating]

Outside dimensions
20.9" w., 39.3" h., 3.9" d

PANELBOARDS

SCP 341-xx-Mxxx RS-232 Controlled Panelboard 3Ø, 208Y/120 Vac, 4 wire. - 225 Amp Main Breaker Standard

LynTec

RS-232 Controlled Panelboard

MODEL NUMBERS

SCP 341-10-Mxxx
(Up to 10 RS-232 controlled circuits)
SCP 341-20-Mxxx
(Up to 20 RS-232 controlled circuits)
SCP 341-30-Mxxx
(Up to 30 RS-232 controlled circuits)
SCP 341-40-Mxxx
(Up to 40 RS-232 controlled circuits) SCP 341-50-Mxxx
(Up to 41 RS-232 controlled circuits limited by 42 circuit code rule)
Square D NQOD-NL MB Panel with LynTec low-voltage sidecar.
Standard SCP-225A Main Breaker: 225 Amp. - 65k AIR - MJG36225

Main Breaker options
Part\# suffix - Bold face $=$ Amps
-MHG3125, -MJG3150, -MJG3175 or -MJG3200 Wire Sizes
Main Breaker: 3/0-350 kcmil Al/Cu 200% Neutral has one feed lug that accepts 2-250 kcmil Cu wires

SCP 341-xx-M400 RS-232 Controlled Panelboard
3Ø, 208Y/120 Vac, 4 wire. - 400 Amp Main Breaker Standard

LynTec

RS-232 Controlled Panelboard

model numbers

SCP 341-10-M400
(Up to 10 RS-232 controlled circuits)
SCP 341-20-M400
(Up to 20 RS-232 controlled circuits)
SCP 341-30-M400
(Up to 30 RS-232 controlled circuits)
SCP 341-40-M400
(Up to 40 RS-232 controlled circuits) SCP 341-50-M400
(Up to 41 RS-232 controlled circuits limited by 42 circuit code rule)
Square D NQOD MB Panel with LynTec low-voltage sidecar.
Standard SCP 400A Main Breaker:
400 Amp. - 10k AIR - LA36400
[Amps Interrupt Rating]
Wire Sizes
Main Breaker: 1 \#1-600 kcmil Cu or
2 - \#1-250 kcmil Cu (per NEC)
100% Neutral has one feed lug that accepts one \#1-750 kcmil
or two \#1-300 kcmil Cu wires.
Outside dimensions:
28.06" w., 68.2" h., 6.13" d.

Optional isolated technical around

Planning and Layout Worksheet - As-built door label LynTec SCLC 326-xx RS-232 Controlled Load Center Breaker types, sizes, positions and connections

Job
Panel \qquad
Comments

SC-10 RS-232 CONTROLLER BOARDS

Numbered circuit LED
Indicates status of breaker Flashes during timed command countdown.

Movable circuit jumpers set the RS-232 BOARD address. The SC-10 board scans addresses or breakers it locates at powe up or during reset. At power-up or during reset, the board scans and pulses all breaker connectors from 1 to 10. Each breaker load found is assigned a status. If the breake configuration is changed by adding, deleting or moving breakers, update the breaker status with a re-scan.

Cycle the RS-232 CONTROL POWER breaker off for at least 3 sec . or press the reset button ore-scan.

RS-232 CONTROLLED PANELBOARDS

SCP 341-40
RS-232 Controled Panelboard with optional ITG cabinet

MOTORIZED BREAKERS

Field installed, UL \& CSA listed, motorized circuit breakers are required to complete the panel package.

bLue type = Bolt-on breakers for Panelboards ONLY — Clip-on breakers fit Load Centers or Panelboards

BMB-15 Bolt-on Motorized Breaker, Square D \#QOB115PL-5393
MB-15 Clip-on Motorized Breaker, Square D \#QO115PL-5393 One pole, 15 Amps. Special 60" leads. Square D trip curve: 730-4

BMB-20 \qquad Bolt-on Motorized Breaker, Square D \#QOB120PL-5393
MB-20 Clip-on Motorized Breaker, Square D \#QO120PL-5393 One pole, 20 Amps . Special 60" leads. Square D trip curve: 730-4 15 and 20 Amp breakers have a HM, (High Magnetic) rating.
HM reduces nuisance breaker trips on high inrush loads.
BMB-220 Bolt-on Motorized Breaker, Square D \#QOB220PL-5393 MB-220 Clip-on Motorized Breaker, Square D \#QO220PL-5393 Two pole, 20 Amps. Special 60" leads. Square D trip curve: 730-4 15 and 20 Amp breakers have a HM, (High Magnetic) rating. HM reduces nuisance breaker trips on high inrush loads.
BMB-30 Bolt-on Motorized Breaker, Square D \#QOB130PL-5393
MB-30 Clip-on Motorized Breaker, Square D \#QO130PL-5393 One pole, 30 Amps. Special 60" leads. Square D trip curve: 730-5

BMB-230 Bolt-on Motorized Breaker, Square D \#QOB230PL-5393
MB-230 Clip-on Motorized Breaker, Square D \#QO230PL-5393
Two pole, 30 Amps. Special 60" leads. Square D trip curve: 730-5
2 pole 30A, 40A and 60A and 3 pole Bolt-on and Clip-on Motorized Breakers are also available on special order. - Call 800-724-4047 for price and delivery.

UnMotorized circuit breakers for un-controlled circuits

BUMB-10, -15, -20 or -30 are Bolt-on, 10, 15, 20 or 30 amp single pole.
Square D QOB110, QOB115HM, QOB120HM or QOB130. - 15s \& 20s are High Magnetic.
UMB-10, -15, -20 or $\mathbf{- 3 0}$ are Clip-on, 10, 15, 20 or 30 amp single pole.
Square D QO110, QO115HM, QO120HM or QO130. - 15s \& 20s are High Magnetic.

PRODUCT SPECIFICATIONS

Circuits controlled by one or more SC-10 Control boards

Each SC-10 board has 10 drivers capable of driving one 1, 2 or 3 pole BMB or MB series motorized circuit breakers. Each breaker has its own individual RS-232 sub- address. The motorized breakers may be located in any open slot in the panel.
Bold face type $=$ legends printed on SC-10 boards.

STARTING address

The BOARD address is field programmed by installing push-on jumpers. Each board has a starting RS-232 address which is typically set between 1 and 99.

The SC-10 board scans addresses for breakers it locates at power-up or during reset. At power-up or during reset, the board scans and pulses all breaker connectors from 1 to 10 . Each breaker load found is assigned a status. See RS-232 protcol for more detailed descriptions

NOTE

If a breaker is plugged into a connector after power-up it will be ignored until a new power-up scan/reset is run by cycling the RS-232 CONTROL POWER breaker off for at least 3 seconds or pushing the red reset button.

Indicator LEDs

Amber POWER LED Power to each SC-10 circuit board is indicated by the amber POWER LED.

Numbered Green LEDs, 1-10. Green numbered LEDs, adjacent to each breaker connector, light when the circuit breaker motor has been pulsed on.
Red warning LED Low Voltage, INVALID address or No Breakers Attached

Low Voltage $=$ A fast red flash indicates AC line voltage is below 105 VAC - No RS-232 reception or execution.
INVALID address $=$ A slow $(1 \mathrm{~Hz})$ red flash indicates an invalid address setting recieved per individual card.

No Breakers Attached = A continuously lit red LED indicates no breakers were found at the time of the powerup scan.

Green Receiving RS-232 LED When the Receiving RS-232 LED is flashing, the system is active and ready to execute RS-232 commands. The Receiving RS-232 LED stays lit during command execution.
Green RS-232 Output LED Flickering LED indicates data presence at the Buffered RS-232 Output.

Brown-out protection

Five seconds after power stabilizes above 105 volts, the board begins receiving RS-232 signals indicated by a flashing green Receiving RS-232 LED. When the Receiving RS-232 LED is flashing, the system is ready to execute RS-232 commands. A fast flashing red LED indicates the power hasn't been above 105 volts for the last 5 seconds and the controller is waiting for the power to stabilize before resuming RS-232 reception.

Motorized Circuit Breaker Low Voltage Connections

Each motorized breaker derives its control power through a 60" - 3 conductor wire. This low voltage, 600 volt insulated, cable is field connected to the lever-latch 3 pin plugs. The lever-latch plugs fit into numbered receptacles on the circuit board/s.

RS-232 CONTROL POWER

The RS-232 CONTROL POWER circuit breaker, mounted in the lower right position in the high voltage section of the panel, is connected to a UL listed 120 v to $24 \mathrm{v}, 40 \mathrm{VA}$ transformer mounted inside the low voltage cabinet.
This 10 amp un-motorized breaker should be left on continuously. This circuit breaker is used as an approved, switchable connection method to the high voltage. The UL \& UL_{c} listed transformer is impedance protected with an internal thermal fuse.
Each sequencer board is protected by an on-board 3AG $3 / 4 \mathrm{amp}$ fuse.
Power required: $50 / 60 \mathrm{~Hz}, 6.5$ watts per board with 10 breakers in the on condition. 33 watts maximum per panel.

ARCHITECTS \& ENGINEERS SPECIFICATIONS for PDF and Word file links
see http://www.lyntec.com/139-0578_SCLC_A\&E_Spec.pdf and
http://www.lyntec.com/139-0578_SCP_A\&E_Spec.pdf

SC-10 RS232 PROTOCOL

Commands set

Command	Decimal	Hexadecimal
Start byte	176	$0 \times$ B0
Stop byte	240	$0 \times F 0$
Board address	$1-99$	$0 \times 01-0 \times 63$
Output address	$1-10$	$0 \times 01-0 \times 0 \mathrm{~A}$
Output ON	180	$0 \times \mathrm{B4}$
Output OFF	181	$0 \times B 5$
Output status	182	$0 \times \mathrm{B6}$
Status of all outputs	189	$0 \times \mathrm{BD}$
All ON	186	$0 \times \mathrm{BA}$
All OFF	187	$0 \times B B$
EO/ BO Active Response	203	$0 \times C B$

2. Commands description

2.1 Outputs ON command

0xB0, board_address, 0xB4, output_address_1, ..., output_address_m, 0xF0 m<=10 (0x0A)
Example: B0 01 B4 04 0A F0, turns on outputs at 4 and 10, on 1st card

2.2 Outputs OFF command

0xB0, board_address, $0 \times$ BB5, output_address_1, ..., output_address_n, 0xF0
$\mathrm{n}<=10$ ($0 \times 0 \mathrm{~A}$)
Example: B0 02 B5 09 F0, turns off output at 9, on 2nd card

2.3 Outputs ON/ OFF command

0xB0, board_address, 0×1 B4, output_address_1, ..., output_address_m, 0xB5, output_address_1, ..., output_ address_n, 0xF0
m and $n<=10$ ($0 \times 0 \mathrm{~A}$)
Example: B0 01 B4 040 A B5 09 F0, turns on output at 4 and 10, and turns off output at 9, on 1st card

2.4 Outputs status

0xB0, board_address, 0xB6, output_address_1, ..., output_address_m, 0xF0
m<=10 (0x0A)
Example: B0 03 B6 04 0A F0, status of outputs at 4 and 10, on 3rd card

2.5 Status of all outputs

0xBO, board_ address, 0xBD, 0xF0
2.6 All ON - turn on all available outputs

0xBO, board_ address, 0xBA, 0xF0
2.7 All OFF - turn off all available outputs

0xBO, board_address, 0xBB, 0xF0
2.8 Set/ clear output verification status (NOT IMPLEMENTED)

0xBO, board_address, 0×1 BE, output_address_i, output_ver_status_i, output_address_j, output_ver_status_j, ..., output_address_n, output_ver_status_n, 0xF0
output_address_i, output_ver_status_i, output_address_j, output_ver_status_j, ..., output_address_n, output_ ver_status_n - addresses ānd status of outputs, $n<=10$

Output_ver_status coding

Status	Code
Disable	0×01
Enable	0×02

When verification status of the output is disabled, the board will always respond with "no verification" status for this output. Verification status shall be disabled for all outputs driving RR7 relays.

3. Responses

3.1 Output status codes

Status	Code
Off	0×01
On	0×02
Fault	0×03
No verification, expected off	0×04
No verification, expected on	0×05
Empty	0×06
Emergency Override or Brownout Shutdown (EO or BO)	$0 \times C B$

3.2 Output status change response

This response is transmitted when output(s) change(s) status for ANY reason (RS232 command, button push, brown out, recover from brown out, emergency override, recover from emergency override).
0xBO, board_address, 0xB6, output_address_i, output_status_i, ..., output_address_n, output_status_n, $0 \times F 0$
$\mathrm{n}<=10$ ($0 \times 0 \mathrm{~A}$)
Example: B0 01 B6 04010502 OA 06 F0, output at 4 is off, at 5 is on, and at 10 is empty, on 1st card

3.3 Status of all ten outputs (transmitted only in reply to status of all outputs command)

0xB0, board_address, 0xBD, byte_1, ..., byte_10, 0xF0
Example: BO 02 BD 01010101010202020206 F0, outputs 1 thru 5 are off, 6 thru 9 are on, and 10 is empty, on 2nd card

4. AMX Device Discovery

Beacon request: "AMX\r"
Beacon: "AMXB<-SDKClass=Utility $><$-Make=Lyntec $><-$ Model $=S C 10>$-Revision=1.0.0>1r"

