LynTec RS-232 Controlled Panels and Load Centers

Motorized Breakers Make Control Easy!

All relay based systems MUST be electrically protected by a circuit breaker. Motorized breakers eliminate the need for wall or rack mounted relay based systems...
\square Saves Space
\square Saves redundant installation and hardware costs!
\square UL listed circuit breaker with builtin internal switching capability manufactured by

D square o

\square Time tested, in service over 20 years
\square Available in 15A, 20A and 30A - 1, 2 or 3 poles for remote control of all electrical loads
\square Robust - rated for 60k on, off, on cycles
\square Energy efficient - NO holding current or heat sinks required to maintain state - Runs cool, lasts long!
\square Automatic load shedding and brownout protection in every panel.

\square Emergency override funtion standard on every panel.

Specifiying in 5 easy steps

1. Choose the control method: SC=RS-232
2. Choose the cabinet style: LC for load center and \mathbf{P} for panelboard
3. Choose three phase (3) or single phase (1)
4. Choose the number of circuits: $\mathbf{2 6}$ or $\mathbf{4 1}$ Panelboards are only available in 41 circuits.
5. Choose the maximum number of controlled circuits: 10,20, 30, 40, or $\mathbf{5 0}$.

EX: SCLC 326-20 = a 3 phase load center with 26 circuits (24 max controlled)
SCP 341-30 = a 3 phase panel board with 41 circuits (30 max controlled)

Planning and Layout Worksheet - As-built door label
Job
LynTec SCLC 127-xx Lighting Control Load Center
RS-232 controlled, AC power remote control for un-dimmed lighting circuits
Panel
Breaker types, sizes, positions and connections
Comments

Transfer as-built information to the door.

Keep this sheet for as-built documentation.

Available as PDF download
www.lyntec.com/139-0544_SCLC127_PInr.pdf

LynTec

Serial Control Load Center SCLC 127-xx -xx = Maximum number of controlled breakers. See right side of page for

Square D QO130M200 Load Center with LynTec low-voltage sidecar

Wire: \#6-250 kcmil Al/Cu
Outside Dimensions
20.9" w., 29.8" h., 3.9" d. Surface mount only.

教

Each motorized breaker is actuated by a command from a RS-232 control deviceby \qquad Date As-built door label example:

The RS-232 \# ___ is the RS-232 address of this breaker.
The board jumpers set the RS-232 address of the board. Each breaker has a sub-address of 1-10 Bold line around box $\square=$ suggested control board: \#1 (Top), \#2, \#3 or \#4.

SC-10 circuit boards in left-hand, low-voltage cabinet.

How it works

The CONTROL POWER circuit breaker powers the circuit boards via a 24 volt transformer.
Motorized circuit breakers (face-marked REMOTELY OPERATED) are individually actuated by a command from a remote RS-232 control device.
Each numbered LED idicates the status of that addressed breaker.
Lit $=$ ON, Unlit $=$ OFF
Flashing = command execution in progress.
Each circuit board controls up to ten 1,2 or 3 pole motorized circuit breakers.
RS-232 signals are fed to the first board of each panel.

Power and RS-232 data are daisy-chain fed board to board by the yellow jumper connectors.

The RS-232 address is set for each board by jumpers.
The RS-232 output is an optoisolated, buffered, loop-thru for driving other RS-232 devices. Output data availability is indicated by a flicering LED

MANUAL CONTROL
The circuit breakers may be manually controlled by the TEST switches on each board.
The test switches work in the absence of a RS-232 signal. A valid RS-232 signal, indicated by a flashing Receiving RS-232 LED overrides the test switches.

www.LYnTec.com
 800-724-4047

8-5 Central Time

SC-10 RS232 PROTOCOL

Commands set

Command	Decimal	Hexadecimal
Start byte	176	$0 x B 0$
Stop byte	240	0xF0
Board address	$1-99$	$0 \times 01-0 \times 63$
Output address	$1-10$	$0 x 01-0 x 0 \mathrm{~A}$
Output ON	180	$0 x B 4$
Output OFF	181	$0 x B 5$
Output status	182	$0 x B 6$
Status of all outputs	189	0xBD
All ON	186	0xBA
All OFF	187	0xBB
Set/ clear output verification status*	190	0xBE

*Not be implemented - autoscan can distinguish between RR7 and RR9

2. Commands description

2.1 Outputs ON command

0xB0, board_address, 0xB4, output_address_1, ..., output_address_m, 0xF0 m<=10 (0x0A)
Example: B0 01 B4 04 0A F0, turns on outputs at 4 and 10, on 1st card

2.2 Outputs OFF command

0xB0, board_address, 0xB5, output_address_1, ..., output_address_n, 0xF0
$\mathrm{n}<=10$ ($0 \times 0 \mathrm{~A}$)
Example: B0 02 B5 09 F0, turns off output at 9, on 2nd card

2.3 Outputs ON/ OFF command

0xB0, board_address, 0xB4, output_address_1, ..., output_address_m, 0xB5, output_address_1, ..., output_ address_n, 0xF0
m and $n<=10$ ($0 \times 0 A$)
Example: B0 01 B4 040 A B5 09 F0, turns on output at 4 and 10, and turns off output at 9, on 1st card

2.4 Outputs status

0xB0, board_address, 0xB6, output_address_1, ..., output_address_m, 0xF0
m<=10 (0x0A)
Example: B0 03 B6 04 OA F0, status of outputs at 4 and 10, on 3rd card

2.5 Status of all outputs

0xBO, board_address, 0xBD, 0xFO
2.6 All ON - turn on all available outputs

0xBO, board_ address, $0 \times B A, 0 \times F 0$
2.7 All OFF - turn off all available outputs

0xBO, board_address, 0xBB, 0xF0
2.8 Set/ clear output verification status (NOT IMPLEMENTED)

0xBO, board_address, 0×1 BE, output_address_i, output_ver_status_i, output_address_j, output_ver_status_j, ..., output_address_n, output_ver_status_n, 0xF0
output_address_i, output_ver_status_i, output_address_j, output_ver_status_j, ..., output_address_n, output_ ver_status_n - addresses and status of outputs, $n<=10$

Output_ver_status coding

Status	Code
Disable	0×01
Enable	0×02

When verification status of the output is disabled, the board will always respond with "no verification" status for this output. Verification status shall be disabled for all outputs driving RR7 relays.

3. Responses

3.1 Output status codes

Status	Code
Off	0×01
On	0×02
Fault	0×03
No verification, expected off	0×04
No verification, expected on	0×05
Empty	0×06

3.2 Output status change response

This response is transmitted when output(s) change(s) status for ANY reason (RS232 command, button push, brown out, recover from brown out, emergency override, recover from emergency override).
0xBO, board_address, $0 \times$ XB6, output_address_i, output_status_i, ..., output_address_n, output_status_n, $0 \times F 0$
$\mathrm{n}<=10$ ($0 \times 0 \mathrm{~A}$)
Example: B0 01 B6 040105020 A 06 F0, output at 4 is off, at 5 is on, and at 10 is empty, on 1st card
3.3 Status of all ten outputs (transmitted only in reply to status of all outputs command)

0xB0, board_address, 0xBD, byte_1, ..., byte_10, 0xF0

Example: B0 02 BD 01010101010202020206 F0, outputs 1 thru 5 are off, 6 thru 9 are on, and 10 is empty, on 2nd card

4. AMX Device Discovery

Beacon request: "AMX\r"
Beacon: "AMXB<-SDKClass=Utility $><$-Make $=$ Lyntec $><$-Model $=S C 10>$-Revision=1.0.0 \gg r"

Mechanical Dimensions and Knockouts

LynTec MSLC 113-xx, MSLC 127-xx, MSLC 129-xx, MSLC 326-xx, MSLC 329-xx (MLO), LCLC 326-xx, LCLC 329-xx (MLO) SCLC 127-xx, SCLC 129-xx,
 SCLC 326-xx or SCLC 329-xx (MLO)
 Surface Mount ONLY

QDL \& QGL
2 and 3-pole
70-250 Amperes

POWERPACT Q-frame A - 250 A, Thermal-magnetic (240 Vac)

LynTec
SCP 141

+ All models Special order, NCNR Non Cancelable

3-pole, 240 Vac

Lugs for the POWERPACT Q-frame circuit breakers accept (1) \#4-300 kcmil.
Interrupting Ratings (kA)

	QD	QG
240 V	25	65

For Branch Breaker Series Ratings

This page contains UL Tested and Certified series combination ratings for panelboards. These ratings apply to either an integral main located in the same enclosure or a remote main located in a separate enclosure.

		Integral or Remote Main Circuit Breakers and Remote Main Fuses	Branch Circuit Breaker Designations and Allowable Ampere Ranges ab			
			Type	1-pole	2-pole	3 -pole
$\begin{aligned} & 120 / \\ & 240 \\ & 10 \end{aligned}$	22k	MG	QO (B)	15-30 A
	42k	HD, JD	QO (B) PL	15-30 A	15-60 A	15-30 A
	65k	HG, JG	QO (B) PL	15-30 A	15-60 A	15-30 A
	100k	HJ, JJ	QO (B) PL	15-30 A	15-60 A	15-30 A
	125k	HL, JL	QO (B) PL	15-30 A	15-60 A	15-30 A
$\begin{gathered} 120 / \\ 240 \\ 10 \\ 208 \mathrm{Y} / \\ 120 \end{gathered}$	100k	DJ 400 A	QO (B) QO (B) GFI QO (B) VH QO (B) AFI	$\begin{aligned} & 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-20 \mathrm{~A} \end{aligned}$		$15-150 \mathrm{~A}$ \ldots
		QJ	QO (B) QO (B) AS QO (B) GFI QO (B) PL QO (B) VH QO (B) AFI	$\begin{aligned} & 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-20 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \hline 15-125 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ 150 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 35-150 \mathrm{~A} \end{aligned}$
LynTec models LCLC $326 \begin{array}{r}208 \\ 12\end{array}$ MSLC 326 \qquad SCLC 326 MSLC 338 SCLC 338 MSP 338 SCP 338 MSP139	18k	LALLH (L) 34200MC LALH (L) 3425MC LALLH (L) 34250MC LALH (L) 34400MC	QO (B)	15-30 A	15-30 A	15-30 A
	22k		$\begin{aligned} & \text { QO (B) (B) AS } \\ & \text { QO (B) AS } \\ & \text { QO (B) GFI } \\ & \text { QO (B) PL } \\ & \text { QO (B) AFI } \end{aligned}$	$15-70 \mathrm{~A}$ $15-30 \mathrm{~A}$ $15-30 \mathrm{~A}$ $15-30 \mathrm{~A}$ $15-20 \mathrm{~A}$	$\begin{array}{\|c} \hline 15-125 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ \hline \end{array}$	$\begin{array}{r} \hline 15-100 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ \ldots \\ \ldots \\ \hline \end{array}$
	22k	Q2-Hf	$\begin{aligned} & \mathrm{QO} \text { (B) } \\ & \mathrm{QO} \text { (B) GFI } \\ & \mathrm{QO} \text { (B) AFI } \end{aligned}$	$\begin{array}{\|l\|} \hline 15-70 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-20 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15-100 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ \hline \end{array}$	$\begin{array}{\|r} \hline 15-30 \mathrm{~A} \\ \ldots \\ \ldots . \\ \hline \end{array}$
	25k		$\begin{aligned} & \text { QO (B) } \\ & \text { QO (B) AS } \\ & \text { QO (B) GFI } \\ & \text { QO (BL PL } \\ & \text { QO (B) VH } \\ & \text { QO (B) AFI } \end{aligned}$	$\begin{array}{\|l\|} \hline 15-70 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots-20 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} \hline 15-125 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ 150 \mathrm{~A} \\ \ldots \end{gathered}$	$\begin{array}{r} 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ 15-30 \mathrm{~A} \\ 35-150 \mathrm{~A} \\ \ldots \end{array}$
	25k	ED, FDf	$\begin{aligned} & \text { QO (B) (B) } \\ & \text { QO (B) GFI } \\ & \text { QO (B) AFI AF } \end{aligned}$	$\begin{aligned} & \hline 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-20 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \hline 15-125 \mathrm{~A} \\ 15-60 \mathrm{~A} \end{array}$	$15-100 \mathrm{~A}$
	25k	KDf	$\begin{array}{\|l\|} \hline Q O \text { (B) } \\ \text { QO (B) AS } \\ \mathrm{QO} \text { (B) GFI } \\ \text { QO (B) AFI } \\ \hline \end{array}$			$15-100 \mathrm{~A}$ $15-30 \mathrm{~A}$
LynTec models MSLC 113 MSLC 127 MSLC 129 are series rated 22k AIR. see QO130Mxx on pg 1-3 of Digest	25k	HD, JD	$\begin{aligned} & \text { QO (B) } \\ & \text { QO (B) VH } \\ & \text { QO (B) GFI } \\ & \text { QO AF AFI } \\ & \text { QO (B) H } \\ & \text { QOB2150VH } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 15-70 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-20 \mathrm{~A} \\ \ldots \\ \ldots \\ \hline \end{array}$	$\begin{aligned} & 15-125 \mathrm{~A} \\ & 15-60 \mathrm{~A} \\ & 15-100 \mathrm{~A} \\ & 150 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 15-100 \mathrm{~A} \\ 35-150 \mathrm{~A} \\ \ldots \\ \ldots \\ \ldots \\ \hline \end{array}$
	42k	LA, MA	$\begin{array}{\|l\|l\|} \hline \text { Q2L-Hf } \\ \text { QDL } \end{array}$...	$\begin{aligned} & 110-225 \mathrm{~A} \\ & 70-225 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 110-225 \mathrm{~A} \\ & 70-225 \mathrm{~A} \end{aligned}$
		MG	QO (B) VH	15-30 A	15-30 A	15-30 A
		HD, JD	QO (B) PL	15-30 A	15-60 A	15-30 A
	42k	LC 600 A Maximum	$\begin{aligned} & \mathrm{QO} \text { (B) } \\ & \mathrm{QO} \text { (B) } \mathrm{VH} \\ & \mathrm{QO} \text { (B) GFI } \\ & \mathrm{QO} \text { (B) AFI } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15-70 \mathrm{Ad} \\ & 15-30 \mathrm{~A} \\ & \\ & 15-30 \mathrm{Ae} \\ & 15-20 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} \ldots \\ 15-125 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ \ldots \\ \hline \end{gathered}$	15-100 A (3P 208 V Max.) …
	65k		$\begin{aligned} & \mathrm{QO} \text { (B) VH } \\ & \mathrm{QO} \text { (B) GFI } \\ & \mathrm{QO} \text { (B) AFI } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 15-30 \mathrm{~A} \\ 15-30 \mathrm{Ae} \\ 15-20 \mathrm{~A} \\ \hline \end{array}$	15-125 A \ldots \ldots 1.	$\begin{gathered} 15-100 \mathrm{~A}(3 \mathrm{P} \\ 208 \mathrm{~V} \text { Max. }) \\ \ldots . \\ \ldots \end{gathered}$
	65k	DJ 400 A	$\begin{aligned} & \mathrm{QO} \text { (B) } \\ & \mathrm{QO} \text { (B) VH } \\ & \mathrm{QO} \text { (B) } \mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} 15-70 \mathrm{~A} \\ \ldots \\ \ldots \\ \hline \end{gathered}$	$\begin{aligned} & 15-125 \mathrm{~A} \\ & 150 \mathrm{~A} \\ & 15-100 \mathrm{~A} \end{aligned}$	[15-150 A
	65k	EG, FGf , KGf	$\begin{aligned} & \text { QO (B) (B) } \\ & \text { QO (B) GFI } \\ & \text { QO (B) AFI } \end{aligned}$	$\begin{aligned} & \hline 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-20 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15-125 \mathrm{~A} \\ & 15-60 \mathrm{~A} \end{aligned}$	$15-100 \mathrm{~A}$
	65 k	QG	$\begin{aligned} & \mathrm{QO} \text { (B) } \\ & \mathrm{QO} \text { (B) AS } \\ & \mathrm{QO} \text { (B) VH } \end{aligned}$	$\begin{aligned} & \hline 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15-125 \mathrm{~A} \\ & 15-30 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 35-150 \mathrm{~A} \end{array}$
		$\mathrm{QG}, \mathrm{HG}, \mathrm{JG}^{\mathrm{BMB}-\mathrm{xx}}$	$\begin{aligned} & \mathrm{QO}(\mathrm{~B}) \mathrm{GFI} \\ & \hline \mathrm{QO}(\mathrm{~B}) \mathrm{PL} \\ & \hline \mathrm{QO}(\mathrm{~B}) \mathrm{AFI} \\ & \hline \end{aligned}$	$\begin{aligned} & 15-30 \mathrm{~A} \\ & \hline 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & \hline \end{aligned}$	$15-60 \mathrm{~A}$ $15-60 \mathrm{~A}$ \cdots	$15-30 A \ddot{A}$
LynTec models MSP 119	65 K HG, JG BUMB-xx		$Q \mathrm{OO}(\mathrm{B})$ $\mathrm{QO}(\mathrm{B}) \mathrm{VH}$ QO (B) QOB2150VH	$15-70 \mathrm{~A}$	$\begin{aligned} & \hline 15-125 \mathrm{~A} \\ & 15-100 \mathrm{~A} \\ & 1-10 \mathrm{~A} \end{aligned}$	$15-100 \mathrm{~A}$ $35-150 \mathrm{~A}$ \ldots \ldots
$\left.\begin{array}{l} \text { MSP } 141 \\ \text { SCP } 141 \end{array}\right\}$	$\sqrt{65 k}$	FCL22- KCL22- FCL32- KCL32_	$\begin{aligned} & \text { QO (B) } \\ & \text { QO (B) } \\ & \text { QO (BS } \\ & \text { QO (B) AFI } \\ & \hline \text { (B) AFI } \end{aligned}$	$\begin{array}{\|l\|} \hline 15-70 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-20 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 15-100 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \end{aligned}$	$\begin{array}{r} \hline 15-100 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ \ldots \\ \hline \end{array}$
$\begin{aligned} & \text { MSP } 341 \\ & \text { SCP } 341 \end{aligned}$	65k	400 A Max. Class J or T6 Fuses	$\begin{aligned} & \mathrm{QO}(\mathrm{~B}) \mathrm{VH} \\ & \mathrm{QOB-VH} \\ & \mathrm{QO} \text { (B) AFI } \end{aligned}$	$15-30 \mathrm{~A}$ $15-20 \mathrm{~A}$	$\begin{array}{\|c} 15-125 \mathrm{~A} \\ 150 \mathrm{~A} \\ \ldots \\ \hline \end{array}$	$15-100 \mathrm{~A}$
	100k	FCL24-_ KCL24- FCL34_ KCL34_	$\begin{array}{\|l\|} \hline \mathrm{QO} \text { (B) } \\ \mathrm{QO} \text { (B) AS } \\ \mathrm{QO} \text { (B) GFI } \\ \mathrm{QO} \text { (B) AFI } \\ \hline \end{array}$		$\begin{gathered} \hline 15-100 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ \hline \end{gathered}$	15-100 A $15-30 \mathrm{~A}$
	100k	200 A Max. Class T3 Fuses	QO (B) AFI	15-20 A
	100k	EJ, FJf	$\begin{aligned} & \mathrm{QO} \text { (B) } \\ & \mathrm{QO} \text { (B) GFI } \\ & \mathrm{QO} \text { (B) AFI } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 15-70 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-20 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} 15-125 \mathrm{~A} \\ 15-60 \mathrm{~A} \\ \ldots \\ \hline \end{gathered}$	$15-100 \mathrm{~A}$

QOBxxx (B) = BUMB series Bolt-on, UnMotorized Breaker $-\mathbf{x} X X=$ poles. $x \mathbf{x x}=$ trip current.
[1 pole] BUMB-15, BUMB-20, BUMB-30
[2 pole] BUMB-215, BUMB-220, BUMB-230 [3 pole] BUMB-315, BUMB-320, BUMB-330
QOxxx = UMB series clip-on, UnMotorized Breaker $-\mathbf{x} X X=$ poles. $x \mathbf{x x}=$ trip current
[1 pole] UMB-15, UMB-20, UMB-30
[2 pole] UMB-215, UMB-220, UMB-230
[3 pole] UMB-315, UMB-320, UMB-330
All 15 \& 20 A breakers are HM (High Magnetic)

NQOD Series Ratings (Continued)

		Integral or Remote Main Circuit Breakers and Remote Main Fuses	Branch Circuit Breaker Designations and Allowable Ampere Ranges ab			
			Type	1-pole	2-pole	3 -pole
	100k	HJ, JJ HL. JL	QO (B) QO (B) VH QO (B) GFI QO (B) PL QO (B) AFI QO (B) H QOB2150VH	$\begin{aligned} & \hline 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-20 \mathrm{~A} \end{aligned}$	15-125 A 15-60 A 15-60 A $15-100 \mathrm{~A}$ 150 A	$\begin{array}{r} \hline 15-100 \mathrm{~A} \\ 35-150 \mathrm{~A} \\ 15-30 \ldots \\ \ldots \\ \ldots \\ \ldots \end{array}$
240	200k	FI, KI	QO (B) QO (B) AS QO (B) GFI QO (B) AFI	$\begin{array}{\|l} \hline 15-70 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ 15-20 \mathrm{~A} \end{array}$	$\begin{aligned} & 15-125 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-60 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 15-100 \mathrm{~A} \\ 15-30 \mathrm{~A} \\ \ldots \\ \ldots \end{array}$
	200k	Maximum Fuses 200 A Class J or T6 400 A Class T3	$\begin{aligned} & \mathrm{QO} \text { (B) (B) } \\ & \mathrm{QO} \text { (B) AS } \\ & \mathrm{QO} \text { (B) GFI } \end{aligned}$	$\begin{aligned} & \hline 15-70 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-30 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 15-125 \mathrm{~A} \\ & 15-30 \mathrm{~A} \\ & 15-60 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 15-100 \mathrm{~A} \\ & 15-30 \mathrm{~A} \end{aligned}$

Suffixes HID, SWD and SWN may also be applied to the applicable branch circuit breakers
shown above, except suffix SWN may NOT be applied in combination with LC main circuit
shown above, except suffix SWN may NOT be applied in combination with LC main circuit
breakers.
Where QO (B) circuit breakers are shown above, QO (B) H, QO (B) VH, and QH (B) circuit Where $\mathrm{QO}(\mathrm{B})$ circuit breake
breakers may also be used.
(Freakers may arisu be be used.
\star Current rating also applies, but at the voltage rating of the circuit breaker.
Vircuit breakers may not be used when the LC circuit breaker is rated 450,500 or 600 A .
\triangle Obsolescent. Contact your nearest Square $\mathrm{D} /$ Schneider Electric sales office for replacemen circuit breaker. One-pole FJ circuit breakers are still available.
Where $\mathrm{QO}(\mathrm{B})$ GFI circuit breakers are shown above, $\mathrm{QO}(\mathrm{B})$, EPD circuit breakers may also be

NF Series Ratings

		Main Type	Branch Type	Poles
240	65,000	EG, FH, FGf , KH, LH, MH, MX, HG, JG	EDB, EDB-EPD	1, 2 \&
		EG	ECB-G3	
	100,000	EJ, FC, FJf , KC, LC, LX, HJ, JJ	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB } \end{aligned}$	
		EJ, FC, KC, HJ, JJ	ECB-G3	
	125,000	HL, JL	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, ECB-G3 } \end{aligned}$	
	200,000	Fl, KI, LI, LXI	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	
		FI, KI	ECB-G3	
480Y/277	35,000	EG, FGf , KH, LH, HG, JG	EDB, EDB-EPD	1,2 \& 3
		EG, HG, JG	ECB-G3	
	65,000	EJ, FC, FJf , KC, LC, LX, HJ, JJ	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB } \end{aligned}$	
		EJ, FC, KC, HJ, JJ	ECB-G3	
	100,000	HL,JL	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB } \end{aligned}$	
	200,000	FI, KI, LI, LXI	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	
		FI, KI	ECB-G3	
600Y/347	18,000	HG, JG, MG	EDB, EDB-EPD	1,2,3
	25,000	EJ, FI, KH, KL, LC,. LE, LX, LI, LXI, HJ, JJ	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB } \end{aligned}$	
		LH	EDB(15-70 A), EGB	
	35,000	LC, LE	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	
	50,000	HL, JL	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB } \end{aligned}$	
	65,000	FI, KI	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	
		LI, XI	EJB	
		Remote Main Fuse		
240	200,000	200 Ampere Maximum Class J or T (600V)	ECB-G3	1, 2 \& 3
480Y/277	100,000	400 Ampere Maximum Class J or T (600V)	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	1, 2 \& 3
	200,000	200 Ampere Maximum Class J or T (600V)	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	
	200,000	200 Ampere Maximum Class Jor T (600V)	ECB-G3	
600Y/347	200,000	200 Ampere Maximum Class J or T (600V)	$\begin{aligned} & \text { EDB, EDB-EPD, } \\ & \text { EGB, EJB } \end{aligned}$	1,2 \& 3

(QOBPLxxx-5393 = BMB series Bolt-on, Motorized. (REMOTELY OPERATED) $-\mathbf{x} x x=$ poles. $x \mathbf{x x}=$ trip current. -5393 suffix denotes special $60^{\prime \prime}$ control wires.
[1 pole] BMB-15, BMB-20, BMB-30
[2 pole] BMB-215, BMB-220, BMB-230, BMB-240, BMB-250, BMB-260 [3 pole] BMB-315, BMB-320, BMB-330
QOPLxxx-5393 = MB series clip-on, Motorized. (REMOTELY OPERATED) $-\mathbf{x x x}=$ poles. $\mathrm{x} \mathbf{x x}=$ trip current. -5393 suffix denotes special 60 " control wires.
[1 pole] MB-15, MB-20, MB-30
[2 pole] MB-215, MB-220, MB-230, MB-240, MB-250, MB-260
[3 pole] MB-315, MB-320, MB-330

QO-PL (Plug-on), QOB-PL (Bolt-on) Powerlink ${ }^{\circledR}$ Remotely Operated Circuit Breakers
 (Use in Type QO Load Centers and Type NQO, NQOB, and NQOD Panelboards)

Retain for future use.

REQUIREMENTS

Remotely Operated Circuit Requirements

A. DANGER

HAZARD OF ELECTRIC SHOCK, BURN, OR EXPLOSION.

When servicing a branch circuit fed by a remotely operated circuit breaker, move handle of remotely operated circuit breaker to OFF position. Do not rely on remote operation to open circuit breaker.

Failure to follow these instructions will result in personal injury or death.

CIRCUIT BREAKER INSTALLATION

DANGER

HAZARD OF ELECTRIC SHOCK,

 EXPLOSION, OR ARC FLASH- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death, or serious injury.

See page 2 for LynTec part number explanation

POWERLINK ${ }^{\circledR}$ QO(B)-PL Remotely Operated Circuit Breakers require a power supply capable of delivering at least two amperes at 24 Vdc for a minimum of 50 milliseconds. One-, two-, and three-pole circuit breakers all have one internal motor, and power requirements are the same regardless of the number of poles and ampere ratings.

The required power supply ampacity and control device contact rating are determined by the number of circuit breakers to be switched simultaneously (i.e., four circuit breakers switched simultaneously require a power supply and a control device contact rated 8 amperes minimum). The control device may be either a normally-open (NO)/ normally-closed (NC) contact; a single-pole, double-throw switch (SPDT); or other three-wire control device.

1. Turn off all power supplying this equipment before working on or inside equipment.

All LynTec supplied breakers have special 60" control wires. (Square D standards are 18".)
figure below)

4. Except for remotely operated connections, QO(B)-PL remotely operated circuit breakers are installed in a panelboard/load center the same as conventional QO(B) circuit breakers.

Connection of remotely operated circuit (refer to the figure on next page)
5. Assure that power supply and control device meet requirements listed under "Remotely Operated Circuit Requirements."

CIRCUIT BREAKER INSTALLATION

CAUTION

HAZARD OF CIRCUIT BREAKER DAMAGE.

Connect the 24 Vdc remote control wiring as shown on this page.

Failure to follow these instructions can permanently damage the remotely operated circuit breaker.

LynTec
 part numbers

MB series motorized circuit breakers (Snap-On) May be used in LCLC, LCP, MSLC, MSP, SLC or SP series panels.

BMB series motorized circuit breakers (Bolt-On) Use only in LCP, MSP or SP Panelboards
All BMB \& MB series breakers have Square D part number suffix of -5393 indicating a special 60 inch lead length for remote control wires required to connect to LynTec control boards in low voltage cabinet.
** $=$ Stocked items
**MB-15 = 15 Amp. Square D Qo-115PL-5393
**BMB-15 = 15 Amp. square D Qob-115PL-5393
**MB-20 = 20 Amp. square D QO-120PL-5393
**BMB-20 = 20 Amp. Square D QOB-120PL-5393
**MB-30 $=30$ Amp. Square D QO-130PL-5393
**BMB-30 = 30 Amp. square D Qob-130pL-5393
Two pole motorized - call for pricing \& delivery
MB-215 = 15 Amp. Square D Qo-215PL-5393
BMB-215 = 15 Amp. square D QOB-215PL-5393
**MB-220 = 20 Amp. Square D Qo-220PL-5393
**BMB-220 $=20$ Amp. square D Qob-220PL-5393
MB-230 = 30 Amp. square D Qo-230PL-5393
BMB-230 $=30$ Amp. Square D QOB-230PL-5393
40A, 50A or 60A, Two pole also available on Special Order
Three pole motorized - call for pricing \& delivery
MB-315 = 15 Amp. Square D Qo-315PL-5393
BMB-315 = 15 Amp. square D QOB-315PL-5393
MB-320 = 20 Amp. Square D Qo-320PL-5393
BMB-320 $=20$ Amp. square D QOB-320PL-5393
MB-330 = 30 Amp. square D Qo-330pL-5393
BMB-330 $=30$ Amp. square D QOB-330PL-5393
LynTec also stocks UMB \& BUMB (un-motorized) QO series circuit breakers including HM (High Magnetic). Recommended for eliminating nuisance trips in high inrush applications. [All BMB \& MB-x15's and BMB \& MB-x20's are HM breakers.]

800-724-4047

LynTec • www.LynTec.com
8401 Melrose Dr., Lenexa, KS 66214, USA
Voice 913-529-2233 • Fax 888-722-4157 or 913-529-4157
LynTec overprint 139-0216-08.2 9/23/06

Square D Company
3700 Sixth Street SW
Cedar Rapids IA 52404 USA
1-888-SquareD (1-888-778-2733)
www.SquareD.com
6. All wiring and splicing must comply with applicable code requirements for Class 1 circuits. Refer to paragraph 373-8 and article 725 of the National Electrical Code.
7. Three \#18 AWG control wires are attached to the remotely operated circuit breaker for connection to the power supply and remote control device and should be cut to the required length to reach the splice connections. Use \#18 AWG or larger conductors with 600 V insulation and approved wire connectors for splices.
8. Connect the black lead of the remotely operated circuit breaker to the negative (-) terminal of the 24 Vdc power supply. Connect the red lead of the remotely operated circuit breaker to the positive (+) terminal of the 24 Vdc power supply. Connect the white lead of the remote control device. The remote control device provides connections between either positive or negative potential of the power supply and the white wire of the remotely operated circuit breaker, as appropriate.
9. Applying the positive potential of the power supply to the white wire (contact closure between the red wire and white wire) will operate the remote mechanism of the circuit breaker to the OFF position. Applying the negative potential of the power supply to the white wire (contact closure between the black wire and the white wire) will operate the remote mechanism of the circuit breaker to the ON position. A control circuit utilizing a normally open (NO)/normally closed (NC) contact is illustrated below.

NOTE: The remote mechanism will not move the circuit breaker handle. Also, the remote mechanism cannot turn power ON when the circuit breaker is tripped (VISI-TRIP ${ }^{\circledR}$ flag indicator showing) or when the circuit breaker handle is in the OFF position.

Installation of the trim and operational checks

10. Remove corresponding twist-out from panelboard trim and replace trim.
11. Turn power to panelboard on.
12. Turn remotely operated circuit breaker handle to the ON position.
13. Turn power to the remotely operated circuit on and test this circuit, turning remotely operated circuit breaker off remotely, then on remotely. If power to remote controlled circuit breaker load does not switch off and on, turn off power to remotely operated circuit and panelboard and check wiring.

NOTE: A power supply is available from Square D Company, Cat. No. QOPLPS (plug-on) or QOBPLPS (bolt-on).

Splice not normally required with

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
© 1991-2003 Schneider Electric All Rights Reserved

